Material-Based Design Computation: Tiling Behavior

نویسنده

  • Neri Oxman
چکیده

From natural objects to man-made artifacts, tiling is all around us: it is the act of rationalizing highly complex form by breaking it up into smaller, continuous components. If well pursued, tiled objects can be easily designed and assembled. However, a geometric-centric view of tiling, whereby a predefined form determines the shape, size, and organization of tiles, has victimized the field of digital design. This paper questions the role of tiling as rationalizing method and offers an alternative theoretical framework and technical grounding for tiling behavior: the act of generation-through-tessellation informed by material behavior. The tools developed are implemented in the design of a 3D-printed chaise lounge, using multiple materials. The technical objective is to introduce a quantitative characterization and analysis of property mapping, as it is applied to a tiling algorithm using Voronoi cell tessellation. The network of tessellated Voronoi cells is used as an element in the Voronoi Finite Element Method (V-FEM) that the author developed. Various characterization functions and geometric parameters are generated, and V-FEM is executed for plane-strain analysis of doubly curved surfaces, from which global and local responses are evaluated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material-based Design Computation An Inquiry into Digital Simulation of Physical Material Properties as Design Generators

The paper demonstrates the association between geometry and material behavior, specifically the elastic properties of resin impregnated latex membranes, by means of homogenizing protocols which translate physical properties into geometrical functions. Resin-impregnation patterns are applied to 2-D pre-stretched form-active tension systems to induce 3-D curvature upon release.This method enables...

متن کامل

Enumeration of Polyominoes for p4 Tiling

Polyominoes are the two dimensional shapes made by connecting n unit squares, joined along their edges. In this paper, we propose algorithms to enumerate polyominoes for p4 tiling, i.e., those covering the plane by only 90 degrees rotations around two rotation centers. The conventional methods are basically trial and error, i.e., they repeat generating polyominoes and checking whether the shape...

متن کامل

Highly Efficient Compensation-based Parallelism for Wavefront Loops on GPUs

Wavefront loops are widely used in many scientific applications, e.g., partial differential equation (PDE) solvers and sequence alignment tools. However, due to the data dependencies in wavefront loops, it is challenging to fully utilize the abundant compute units of GPUs and to reuse data through their memory hierarchy. Existing solutions can only optimize for these factors to a limited extent...

متن کامل

FPGA based Implementation of High Speed Double Precision Floating Point Multiplier with Tiling Technique using Verilog

Floating point arithmetic is widely used in many areas, especially scientific computation and signal processing. For many signal processing, and graphics applications, it is acceptable to trade off some accuracy (in the least significant bit positions) for faster and better implementations. However, most of these modern applications need higher frequency or low latency of operations with minima...

متن کامل

Compact Self-Repairing DNA Lattices

Self-repair is essential to all living systems, providing the ability to remain functional in spite of gradual damage. In the context of self-assembly of self-repairing synthetic biomolecular systems, recently Winfree developed a method for transforming a set of DNA tiles into its selfhealing counterpart at the cost of increasing the lattice area by a factor of 25. The overall focus of this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009